

New Sources for Biofuels: What Are They?

Rick Zalesky Vice President Chevron Technology Ventures

U.S. Department of Agriculture 2008 Outlook Forum Arlington, Virginia – February 21, 2008

Framing the Future of Energy

- Significant growth is expected in global energy demand
- Adding and accelerating diversification is essential
- Scale matters and scaling up has effects
- Infrastructure development is often overlooked
- Renewable energy requires different business models
- Energy strategies and solutions require a holistic view, including addressing carbon constraints

For a comprehensive analysis of the future of energy to 2030, see the major new study at: *WWW.npc.org*

The Dimensions of Energy

Scale	Time	Capital
Global fuel volume: Today:	Manufacturing and infrastructure:	Estimates of future investment call for \$20+ trillion over the next 30 years
One thousand barrels per second	 Takes decades to develop at scale; lasts generations 	
> 1 trillion gal/yr0.5 gal for every	Large ethanol plant:100 MM gal/yrLarge crude refinery:	
human, every day Tomorrow – 2030	3000 MM gal/yr Technology:	
Mid-range growth forecasts at + 50% Low range growth	 Avg. >15 yrs from invention to large scale 	
Low-range growth forecasts at +30%	deployment	

Chevron's View of the Next Generation of Global Energy

Conventional Fuels
Finding and Developing the
Next Trillion Barrels

Alternative Fuels

Converting Unconventional Resources with Molecular Transformation

Renewable Fuels

Building Industrial-Scale,

Sustainable Business Models

Fuels from Unconventional Resources

Fuels from Unconventional Resources

Chevron

Synthetic Alternative Fuels

Synthetic Alternative Fuels

Advanced Biofuels Development

Industrial-scale Infrastructure

2nd Generation Technology

Key Components

Large, concentrated supplies of feedstock

Advanced Biofuels Development

Industrial-scale Infrastructure

2nd Generation Technology Large, concentrated supplies of feedstock

Key Components

Feedstock Challenges

Develop cost-advantaged access to scalable feedstock supply to support industrial scale volumes:

- Scale and economic viability
- New vs. existing infrastructure
- Crop threats and seasonality
- Food vs. fuel competition
- Land availability
- Level and persistence of subsidies
- Water supplies
- LCA & LUC

Algae, which require no arable land at all, potentially can produce much more oil per acre than any terrestrial crop.

However, algae is still some years from being a commercially viable feedstock source.

Conventional and Green Crude Process

With all the excitement about alternative energy sources ...

... it's important to keep perspective ...

... and we're going to need it all.

Fundamentals of the Energy System

- A complex blend of economics, geopolitics, technology and the environment
- World's largest supply chain
- Highly integrated infrastructures
- Capital- and technology- intensive
- Very long-lived assets

